On spectral decomposition by main functions of one quadratie bunch on the whole axis
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 1, pp. 107-106
Cet article a éte moissonné depuis la source Math-Net.Ru
The bunch of differential operators generated by the differential expression of the second order whose main characteristic polynomial has one root with the multiplicity two is considered, when the coefficients of differential expression contain only positive Fourier index in the space $L_2(-\infty,\infty)$. The solutions of corresponding differential equations are constructed. It is obtained that the bunch has purely continuous spectrum coinciding with whole real axis. For other points of complex plane of spectral parameter the bunch resolvent is integral operator with Carleman type kernel. The decomposition by main functions of continuous spectrum is obtained for triply continuous differentialble compactly supported functions.
@article{JMAG_2005_12_1_a6,
author = {E. G. Orudzhev},
title = {On spectral decomposition by main functions of one quadratie bunch on the whole axis},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {107--106},
year = {2005},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a6/}
}
TY - JOUR AU - E. G. Orudzhev TI - On spectral decomposition by main functions of one quadratie bunch on the whole axis JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2005 SP - 107 EP - 106 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a6/ LA - ru ID - JMAG_2005_12_1_a6 ER -
E. G. Orudzhev. On spectral decomposition by main functions of one quadratie bunch on the whole axis. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 1, pp. 107-106. http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a6/