Condition of completeness of elementary solutions for degenerate higher order operator differential equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 1, pp. 86-102
Cet article a éte moissonné depuis la source Math-Net.Ru
In a Banach space, the higher order abstract differential equation $\sum\limits_{j=0}^nA_ju^{(j)}(t)=0$ is investigated. The operator $A_n$ in the higher derivative may be degenerate. Conditions of approximation of solutions by linear combinations of elementary solutions have been obtained. Abstract results are applied to partial differential equations.
@article{JMAG_2005_12_1_a4,
author = {A. L. Piven},
title = {Condition of completeness of elementary solutions for degenerate higher order operator differential equations},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {86--102},
year = {2005},
volume = {12},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/}
}
TY - JOUR AU - A. L. Piven TI - Condition of completeness of elementary solutions for degenerate higher order operator differential equations JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2005 SP - 86 EP - 102 VL - 12 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/ LA - ru ID - JMAG_2005_12_1_a4 ER -
%0 Journal Article %A A. L. Piven %T Condition of completeness of elementary solutions for degenerate higher order operator differential equations %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2005 %P 86-102 %V 12 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/ %G ru %F JMAG_2005_12_1_a4
A. L. Piven. Condition of completeness of elementary solutions for degenerate higher order operator differential equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 1, pp. 86-102. http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/