Condition of completeness of elementary solutions for degenerate higher order operator differential equations
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 1, pp. 86-102 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a Banach space, the higher order abstract differential equation $\sum\limits_{j=0}^nA_ju^{(j)}(t)=0$ is investigated. The operator $A_n$ in the higher derivative may be degenerate. Conditions of approximation of solutions by linear combinations of elementary solutions have been obtained. Abstract results are applied to partial differential equations.
@article{JMAG_2005_12_1_a4,
     author = {A. L. Piven},
     title = {Condition of completeness of elementary solutions for degenerate higher order operator differential equations},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {86--102},
     year = {2005},
     volume = {12},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/}
}
TY  - JOUR
AU  - A. L. Piven
TI  - Condition of completeness of elementary solutions for degenerate higher order operator differential equations
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2005
SP  - 86
EP  - 102
VL  - 12
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/
LA  - ru
ID  - JMAG_2005_12_1_a4
ER  - 
%0 Journal Article
%A A. L. Piven
%T Condition of completeness of elementary solutions for degenerate higher order operator differential equations
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2005
%P 86-102
%V 12
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/
%G ru
%F JMAG_2005_12_1_a4
A. L. Piven. Condition of completeness of elementary solutions for degenerate higher order operator differential equations. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 12 (2005) no. 1, pp. 86-102. http://geodesic.mathdoc.fr/item/JMAG_2005_12_1_a4/