A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers. I
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 434-448
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that Bernoulli scheme of independent trials with two outcomes is connected with the binomial coefficients. The aim of this paper is to indicate stochastic processes which are connected with the $q$-polynomial coefficients (in particular, with the $q$-binomial coefficients, or the Gaussian polynomials), Stirling numbers of the first and the second kind, and Euler numbers in a natural way. A probabilistic approach allows us to give very simple proofs of some identities for these coefficients.
@article{JMAG_2004_11_4_a4,
author = {A. Il'inskii},
title = {A probabilistic approach to $q$-polynomial coefficients, {Euler} and {Stirling} {numbers.~I}},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {434--448},
year = {2004},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a4/}
}
TY - JOUR AU - A. Il'inskii TI - A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers. I JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 434 EP - 448 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a4/ LA - en ID - JMAG_2004_11_4_a4 ER -
A. Il'inskii. A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers. I. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 434-448. http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a4/