Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 408-420
Cet article a éte moissonné depuis la source Math-Net.Ru
Orthogonal polynomials and measures on the unit circle are fully determined by their Verblunsky coefficients through the Szegő recurrences. We study measures $\mu$ from the Szegő class whose Verblunsky coefficients vanish off a sequence of positive integers with exponentially growing gaps. All such measures turn out to be absolutely continuous on the circle. We also gather some information about the density function $\mu'$.
@article{JMAG_2004_11_4_a2,
author = {Leonid Golinskii},
title = {Absolutely continuous measures on the unit circle with sparse {Verblunsky} coefficients},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {408--420},
year = {2004},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a2/}
}
TY - JOUR AU - Leonid Golinskii TI - Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 408 EP - 420 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a2/ LA - en ID - JMAG_2004_11_4_a2 ER -
Leonid Golinskii. Absolutely continuous measures on the unit circle with sparse Verblunsky coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 408-420. http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a2/