On the I. I. Privalov theorem on the Hilbert transform of Lipschitz functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 380-407
Cet article a éte moissonné depuis la source Math-Net.Ru
It is known that the Hilbert transform $h(f)$ of a bounded Lipschitz (order one) function $f$ on $\mathbb{R}$ is uniformly continuous ($h$ is understood as the singular integral operator with the Cauchy kernel regularized at infinity, so that $h$ is defined on the class of all functions summable on $\mathbb{R}$ w.r. to the Poisson measure). It is shown that the above theorem does not hold (in a very strong sense) for unbounded Lipschitz f's. Conditions sufficient (and “almost necessary”) for $h(f)$ to be Lipschitz are given. The results are motivated by some uniqueness problems of the Fourier analysis.
@article{JMAG_2004_11_4_a1,
author = {Yu. S. Belov and V. P. Havin},
title = {On the {I.} {I.~Privalov} theorem on the {Hilbert} transform {of~Lipschitz} functions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {380--407},
year = {2004},
volume = {11},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a1/}
}
TY - JOUR AU - Yu. S. Belov AU - V. P. Havin TI - On the I. I. Privalov theorem on the Hilbert transform of Lipschitz functions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 380 EP - 407 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a1/ LA - ru ID - JMAG_2004_11_4_a1 ER -
Yu. S. Belov; V. P. Havin. On the I. I. Privalov theorem on the Hilbert transform of Lipschitz functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 380-407. http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a1/