A sharp inequality for the order of the minimal positive harmonic function in $T$-homogeneous domain
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 375-379
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $G$ be a simply connected domain in $\mathbb C$ which is $T$-homoheneous, i.e., $TG=G$ for some $T>0$. Let $\rho(G)$ be the order of the minimal positive harmonic function in $G$. We prove that a kind of symmetrization of $G$ and prove that it does not increase $\rho(G)$. This implies a sharp lower bound for $\rho(G)$ in terms of conformal modulus of a quadrilateral naturally connected with $G$.
@article{JMAG_2004_11_4_a0,
author = {V. Azarin and A. Gol'dberg},
title = {A sharp inequality for the order of the minimal positive harmonic function in $T$-homogeneous domain},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {375--379},
year = {2004},
volume = {11},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a0/}
}
TY - JOUR AU - V. Azarin AU - A. Gol'dberg TI - A sharp inequality for the order of the minimal positive harmonic function in $T$-homogeneous domain JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 375 EP - 379 VL - 11 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a0/ LA - en ID - JMAG_2004_11_4_a0 ER -
%0 Journal Article %A V. Azarin %A A. Gol'dberg %T A sharp inequality for the order of the minimal positive harmonic function in $T$-homogeneous domain %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2004 %P 375-379 %V 11 %N 4 %U http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a0/ %G en %F JMAG_2004_11_4_a0
V. Azarin; A. Gol'dberg. A sharp inequality for the order of the minimal positive harmonic function in $T$-homogeneous domain. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 4, pp. 375-379. http://geodesic.mathdoc.fr/item/JMAG_2004_11_4_a0/