Finite difference operators with a finite band spectrum
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 3, pp. 331-340
Cet article a éte moissonné depuis la source Math-Net.Ru
We discuss a functional model for multidiagonal selfadjoint operators with almost periodic coefficients that generalizes the well known model for finite band Jacobi matrices. It give us an opportunity to construct examples of almost periodic operators with different spectral properties. Main result deals with an exact condition for the uniqueness of the model of the given type.
@article{JMAG_2004_11_3_a5,
author = {M. Shapiro and V. Vinnikov and P. Yuditskii},
title = {Finite difference operators with a finite band spectrum},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {331--340},
year = {2004},
volume = {11},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_3_a5/}
}
TY - JOUR AU - M. Shapiro AU - V. Vinnikov AU - P. Yuditskii TI - Finite difference operators with a finite band spectrum JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 331 EP - 340 VL - 11 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_3_a5/ LA - en ID - JMAG_2004_11_3_a5 ER -
M. Shapiro; V. Vinnikov; P. Yuditskii. Finite difference operators with a finite band spectrum. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 3, pp. 331-340. http://geodesic.mathdoc.fr/item/JMAG_2004_11_3_a5/