A remark to the construction of canonical products of minimal growth
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 243-248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Given a sequence $(a_n)$ of complex numbers, $|a_n|\nearrow+\i$, we construct an entire function $f$ of minimal growth such that $f(a_n)=0$. Similar result is obtained for analytic functions in the unit disk.
@article{JMAG_2004_11_2_a8,
     author = {M. M. Sheremeta},
     title = {A remark to the construction of canonical products of minimal growth},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {243--248},
     year = {2004},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a8/}
}
TY  - JOUR
AU  - M. M. Sheremeta
TI  - A remark to the construction of canonical products of minimal growth
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 243
EP  - 248
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a8/
LA  - en
ID  - JMAG_2004_11_2_a8
ER  - 
%0 Journal Article
%A M. M. Sheremeta
%T A remark to the construction of canonical products of minimal growth
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 243-248
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a8/
%G en
%F JMAG_2004_11_2_a8
M. M. Sheremeta. A remark to the construction of canonical products of minimal growth. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 243-248. http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a8/