Increasing of smoothness of the solutions to a boundary value problem for the wave equation on the plane
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 169-176
Cet article a éte moissonné depuis la source Math-Net.Ru
The work is devoted to a studying of a boundary value problem for the inhomogeneous wave equation in the half-strip $$ \Pi= \{(x,t):0<x<1,\ t>0\}. $$ There are formulated the boundary conditions such that the smoothness of any solution will increase with growing $t$.
@article{JMAG_2004_11_2_a3,
author = {N. A. Lyul'ko},
title = {Increasing of smoothness of the solutions to a boundary value problem for the wave equation on the plane},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {169--176},
year = {2004},
volume = {11},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a3/}
}
TY - JOUR AU - N. A. Lyul'ko TI - Increasing of smoothness of the solutions to a boundary value problem for the wave equation on the plane JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 169 EP - 176 VL - 11 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a3/ LA - ru ID - JMAG_2004_11_2_a3 ER -
%0 Journal Article %A N. A. Lyul'ko %T Increasing of smoothness of the solutions to a boundary value problem for the wave equation on the plane %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2004 %P 169-176 %V 11 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a3/ %G ru %F JMAG_2004_11_2_a3
N. A. Lyul'ko. Increasing of smoothness of the solutions to a boundary value problem for the wave equation on the plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 169-176. http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a3/