Weak cluster points of a sequence and coverings by cylinders
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 161-168
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $H$ be a Hilbert space. Using Ball's solution of the “complex plank problem” we prove that the following properties of a sequence $a_n>0$ are equivalent: There is a sequence $x_n \in H$ with $\|x_n\|=a_n$, having 0 as a weak cluster point; $\sum_1^\infty a_n^{-2}=\infty$. Using this result we show that a natural idea of generalization of Ball's “complex plank” result to cylinders with $k$-dimensional base fails already for $k=3$. We discuss also generalizations of “weak cluster points” result to other Banach spaces and relations with cotype.
@article{JMAG_2004_11_2_a2,
author = {V. M. Kadets},
title = {Weak cluster points of a sequence and coverings by cylinders},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {161--168},
year = {2004},
volume = {11},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a2/}
}
V. M. Kadets. Weak cluster points of a sequence and coverings by cylinders. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 161-168. http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a2/