Weak cluster points of a sequence and coverings by cylinders
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 161-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $H$ be a Hilbert space. Using Ball's solution of the “complex plank problem” we prove that the following properties of a sequence $a_n>0$ are equivalent: There is a sequence $x_n \in H$ with $\|x_n\|=a_n$, having 0 as a weak cluster point; $\sum_1^\infty a_n^{-2}=\infty$. Using this result we show that a natural idea of generalization of Ball's “complex plank” result to cylinders with $k$-dimensional base fails already for $k=3$. We discuss also generalizations of “weak cluster points” result to other Banach spaces and relations with cotype.
@article{JMAG_2004_11_2_a2,
     author = {V. M. Kadets},
     title = {Weak cluster points of a sequence and coverings by cylinders},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {161--168},
     year = {2004},
     volume = {11},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a2/}
}
TY  - JOUR
AU  - V. M. Kadets
TI  - Weak cluster points of a sequence and coverings by cylinders
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 161
EP  - 168
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a2/
LA  - en
ID  - JMAG_2004_11_2_a2
ER  - 
%0 Journal Article
%A V. M. Kadets
%T Weak cluster points of a sequence and coverings by cylinders
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 161-168
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a2/
%G en
%F JMAG_2004_11_2_a2
V. M. Kadets. Weak cluster points of a sequence and coverings by cylinders. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 161-168. http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a2/