Asymptotics of correlators for ensembles of sparse random matrices
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 135-160 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study asymptotic behaviour of the correlation functions of sparse random $N\times N$ matrices. It is shown that the main term of the correlation function of $k$th and $m$th moments of the integrated density of states is $N^{-1}n_{k,m}$. The closed system of recurrent relations for coefficients $\{n_{k,m}\}_{k,m=1}^\infty$ was obtained.
@article{JMAG_2004_11_2_a1,
     author = {V. V. Vengerovsky},
     title = {Asymptotics of correlators for ensembles of sparse random matrices},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {135--160},
     year = {2004},
     volume = {11},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a1/}
}
TY  - JOUR
AU  - V. V. Vengerovsky
TI  - Asymptotics of correlators for ensembles of sparse random matrices
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 135
EP  - 160
VL  - 11
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a1/
LA  - ru
ID  - JMAG_2004_11_2_a1
ER  - 
%0 Journal Article
%A V. V. Vengerovsky
%T Asymptotics of correlators for ensembles of sparse random matrices
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 135-160
%V 11
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a1/
%G ru
%F JMAG_2004_11_2_a1
V. V. Vengerovsky. Asymptotics of correlators for ensembles of sparse random matrices. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 2, pp. 135-160. http://geodesic.mathdoc.fr/item/JMAG_2004_11_2_a1/