The inverse problem for a class of ordinary differential operators with periodic coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 114-121 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The direct and inverse problem of spectral analyses of a class of ordinary differential equations of order $2m$ with coefficients polynomially depending on the spectral parameter are investigated. It is shown that, the spectrum of the operator pencil is continuous, fill in the rays $\{k\omega_j/\, 0\le k<\infty,\ j=\overline{0,2m-1}\}$, $\omega_j=\exp\left(\frac{ij\pi}{m}\right)$, and there exist spectral singularities on the continues spectrum which coincide with the numbers $\frac{n\omega_j}2$, $j=\overline{0,2m-1}$, $n=1,2,\dots$ The inverse problem of reconstructing of the coefficients by generalized normalizing numbers is solved.
@article{JMAG_2004_11_1_a6,
     author = {R. F. Efendiev},
     title = {The inverse problem for a class of ordinary differential operators with periodic coefficients},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {114--121},
     year = {2004},
     volume = {11},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a6/}
}
TY  - JOUR
AU  - R. F. Efendiev
TI  - The inverse problem for a class of ordinary differential operators with periodic coefficients
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 114
EP  - 121
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a6/
LA  - ru
ID  - JMAG_2004_11_1_a6
ER  - 
%0 Journal Article
%A R. F. Efendiev
%T The inverse problem for a class of ordinary differential operators with periodic coefficients
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 114-121
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a6/
%G ru
%F JMAG_2004_11_1_a6
R. F. Efendiev. The inverse problem for a class of ordinary differential operators with periodic coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 114-121. http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a6/