The inverse problem for a class of ordinary differential operators with periodic coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 114-121
Cet article a éte moissonné depuis la source Math-Net.Ru
The direct and inverse problem of spectral analyses of a class of ordinary differential equations of order $2m$ with coefficients polynomially depending on the spectral parameter are investigated. It is shown that, the spectrum of the operator pencil is continuous, fill in the rays $\{k\omega_j/\, 0\le k<\infty,\ j=\overline{0,2m-1}\}$, $\omega_j=\exp\left(\frac{ij\pi}{m}\right)$, and there exist spectral singularities on the continues spectrum which coincide with the numbers $\frac{n\omega_j}2$, $j=\overline{0,2m-1}$, $n=1,2,\dots$ The inverse problem of reconstructing of the coefficients by generalized normalizing numbers is solved.
@article{JMAG_2004_11_1_a6,
author = {R. F. Efendiev},
title = {The inverse problem for a class of ordinary differential operators with periodic coefficients},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {114--121},
year = {2004},
volume = {11},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a6/}
}
TY - JOUR AU - R. F. Efendiev TI - The inverse problem for a class of ordinary differential operators with periodic coefficients JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 114 EP - 121 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a6/ LA - ru ID - JMAG_2004_11_1_a6 ER -
R. F. Efendiev. The inverse problem for a class of ordinary differential operators with periodic coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 114-121. http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a6/