On the growth of a subharmonic function with Riesz' measure on a ray
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 107-113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider functions $v$ subharmonic in $\mathbf R^n$, $n\ge2$, which are natural counterparts of Weierstrass canonical products (so-called Weierstrass canonical integrals). Under assumptions that the order of $v$ is a noninteger number and the Riesz measure of $v$ is supported by a ray we obtain sharp estimates of asymptotical behavior of $v$ at infinity along rays.
@article{JMAG_2004_11_1_a5,
     author = {A. A. Gol'dberg and I. V. Ostrovskii},
     title = {On the growth of a subharmonic function with {Riesz'} measure on a ray},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {107--113},
     year = {2004},
     volume = {11},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a5/}
}
TY  - JOUR
AU  - A. A. Gol'dberg
AU  - I. V. Ostrovskii
TI  - On the growth of a subharmonic function with Riesz' measure on a ray
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2004
SP  - 107
EP  - 113
VL  - 11
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a5/
LA  - en
ID  - JMAG_2004_11_1_a5
ER  - 
%0 Journal Article
%A A. A. Gol'dberg
%A I. V. Ostrovskii
%T On the growth of a subharmonic function with Riesz' measure on a ray
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2004
%P 107-113
%V 11
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a5/
%G en
%F JMAG_2004_11_1_a5
A. A. Gol'dberg; I. V. Ostrovskii. On the growth of a subharmonic function with Riesz' measure on a ray. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 107-113. http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a5/