On the growth of a subharmonic function with Riesz' measure on a ray
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 107-113
Cet article a éte moissonné depuis la source Math-Net.Ru
We consider functions $v$ subharmonic in $\mathbf R^n$, $n\ge2$, which are natural counterparts of Weierstrass canonical products (so-called Weierstrass canonical integrals). Under assumptions that the order of $v$ is a noninteger number and the Riesz measure of $v$ is supported by a ray we obtain sharp estimates of asymptotical behavior of $v$ at infinity along rays.
@article{JMAG_2004_11_1_a5,
author = {A. A. Gol'dberg and I. V. Ostrovskii},
title = {On the growth of a subharmonic function with {Riesz'} measure on a ray},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {107--113},
year = {2004},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a5/}
}
TY - JOUR AU - A. A. Gol'dberg AU - I. V. Ostrovskii TI - On the growth of a subharmonic function with Riesz' measure on a ray JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 107 EP - 113 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a5/ LA - en ID - JMAG_2004_11_1_a5 ER -
A. A. Gol'dberg; I. V. Ostrovskii. On the growth of a subharmonic function with Riesz' measure on a ray. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 107-113. http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a5/