Spaces of holomorphic almost periodic functions on a strip
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 87-106
Cet article a éte moissonné depuis la source Math-Net.Ru
The notions of almost periodicity in the sense of Weyl and Besicovitch of the order $p\ge 1$ are extended to holomorphic functions on a strip. We prove that the spaces of holomorphic almost periodic functions in the sense of Weyl for various orders $p$ are the same. These spaces are considerably wider than the space of holomorphic uniformly almost periodic functions and considerably narrower than the spaces of holomorphic almost periodic functions in the sense of Besicovitch. Besides we construct examples showing that the spaces of holomorphic almost periodic functions in the sense of Besicovitch for various orders $p$ are all different.
@article{JMAG_2004_11_1_a4,
author = {S. Yu. Favorov and O. I. Udodova},
title = {Spaces of holomorphic almost periodic functions on a strip},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {87--106},
year = {2004},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a4/}
}
TY - JOUR AU - S. Yu. Favorov AU - O. I. Udodova TI - Spaces of holomorphic almost periodic functions on a strip JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 87 EP - 106 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a4/ LA - en ID - JMAG_2004_11_1_a4 ER -
S. Yu. Favorov; O. I. Udodova. Spaces of holomorphic almost periodic functions on a strip. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 87-106. http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a4/