On the zeros of entire absolutely monotonic functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 25-44
Cet article a éte moissonné depuis la source Math-Net.Ru
By the definition, an entire absolutely monotonic function $f$ is an entire function representable in the form $f(z)=\int_0^{\infty}e^{zu}\,P(du)$, where $P$ is a nonnegative finite Borel measure on $\mathbf R^+$ and the integral converges absolutely for each $z\in\mathbf C$. This paper is devoted to the problem of characterization of the sets which can serve as zero sets of entire absolutely monotonic functions. We give the solution to the problem for the sets that do not intersect some angle $\{z:{|\arg z-\pi|}<\alpha\}$ for $\alpha>0$.
@article{JMAG_2004_11_1_a1,
author = {Olga M. Katkova and Anna M. Vishnyakova},
title = {On the zeros of entire absolutely monotonic functions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {25--44},
year = {2004},
volume = {11},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a1/}
}
TY - JOUR AU - Olga M. Katkova AU - Anna M. Vishnyakova TI - On the zeros of entire absolutely monotonic functions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2004 SP - 25 EP - 44 VL - 11 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a1/ LA - en ID - JMAG_2004_11_1_a1 ER -
Olga M. Katkova; Anna M. Vishnyakova. On the zeros of entire absolutely monotonic functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 11 (2004) no. 1, pp. 25-44. http://geodesic.mathdoc.fr/item/JMAG_2004_11_1_a1/