Strong asymptotic stability and constructing of stabilizing controls
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 4, pp. 569-582
Cet article a éte moissonné depuis la source Math-Net.Ru
We show the role which plays a recent theorem on the strong asymptotic stability in the analysis of the strong stabilizability problem in Hilbert spaces. We consider a control system with skew-adjoint operator and one-dimensional control. We examine in details the property for a linear feedback control to stabilize such a system. A robustness analysis of stabilizing controls is also given.
@article{JMAG_2003_10_4_a8,
author = {Grigory M. Sklyar and Alexander V. Rezounenko},
title = {Strong asymptotic stability and constructing of stabilizing controls},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {569--582},
year = {2003},
volume = {10},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a8/}
}
TY - JOUR AU - Grigory M. Sklyar AU - Alexander V. Rezounenko TI - Strong asymptotic stability and constructing of stabilizing controls JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 569 EP - 582 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a8/ LA - en ID - JMAG_2003_10_4_a8 ER -
%0 Journal Article %A Grigory M. Sklyar %A Alexander V. Rezounenko %T Strong asymptotic stability and constructing of stabilizing controls %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2003 %P 569-582 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a8/ %G en %F JMAG_2003_10_4_a8
Grigory M. Sklyar; Alexander V. Rezounenko. Strong asymptotic stability and constructing of stabilizing controls. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 4, pp. 569-582. http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a8/