On real and “symplectic” meromorphic plus-matrix-function and corresponding linear fractional transformation
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 4, pp. 557-568
Cet article a éte moissonné depuis la source Math-Net.Ru
The basic result is: if linear fractional transformation with meromorphic in the unit disk nondegenerate matrix of coefficients $A(z)$ maps the class of holomorphic contractive matrix function into itself so that real (symmetric) matrix functions are transformed into real (symmetric) matrix functions then there exists a mеromorphic scalar function $\rho(z)$ such that $\rho^{-1}(z) A(z)$ is $j$-expansive real (“symplectic” or “antisymplectic”) matrix function.
@article{JMAG_2003_10_4_a7,
author = {L. A. Simakova},
title = {On real and {\textquotedblleft}symplectic{\textquotedblright} meromorphic plus-matrix-function and corresponding linear fractional transformation},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {557--568},
year = {2003},
volume = {10},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a7/}
}
TY - JOUR AU - L. A. Simakova TI - On real and “symplectic” meromorphic plus-matrix-function and corresponding linear fractional transformation JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 557 EP - 568 VL - 10 IS - 4 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a7/ LA - ru ID - JMAG_2003_10_4_a7 ER -
%0 Journal Article %A L. A. Simakova %T On real and “symplectic” meromorphic plus-matrix-function and corresponding linear fractional transformation %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2003 %P 557-568 %V 10 %N 4 %U http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a7/ %G ru %F JMAG_2003_10_4_a7
L. A. Simakova. On real and “symplectic” meromorphic plus-matrix-function and corresponding linear fractional transformation. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 4, pp. 557-568. http://geodesic.mathdoc.fr/item/JMAG_2003_10_4_a7/