On the edge universality of the local eigenvalue statistics of matrix models
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 3, pp. 335-365
Cet article a éte moissonné depuis la source Math-Net.Ru
Basing on our recent results on the $1/n$-expansion in unitary invariant random matrix ensembles, known as matrix models, we prove that the local eigenvalue statistic, arising in a certain neighborhood of the edges of the support of the density of states, is independent of the form of the potential, determining the matrix model. Our proof is applicable to the case of real analytic potentials and of supports, consisting of one or two disjoint intervals.
@article{JMAG_2003_10_3_a5,
author = {L. Pastur and M. Shcherbina},
title = {On the edge universality of the local eigenvalue statistics of matrix models},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {335--365},
year = {2003},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a5/}
}
TY - JOUR AU - L. Pastur AU - M. Shcherbina TI - On the edge universality of the local eigenvalue statistics of matrix models JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 335 EP - 365 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a5/ LA - en ID - JMAG_2003_10_3_a5 ER -
L. Pastur; M. Shcherbina. On the edge universality of the local eigenvalue statistics of matrix models. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 3, pp. 335-365. http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a5/