The Riemann extensions in theory of differential equations and their applications
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 3, pp. 307-325
Cet article a éte moissonné depuis la source Math-Net.Ru
Some properties of the $4$-dim Riemannian spaces with the metrics $$ ds^2=2(za_3-ta_4)dx^2+4(za_2-ta_3)dxdy+2(za_1-ta_2)dy^2+2dxdz+2dydt $$ connected with the second order nonlinear differential equations \begin{equation} y''+a_{1}(x,y){y'}^3+3a_{2}(x,y){y'}^2+3a_{3}(x,y)y'+a_{4}(x,y)=0 \tag{1} \end{equation} with arbitrary coefficients $a_{i}(x,y)$ are studied. The properties of dual equations for the equations (1) are considered. The theory of the invariants of second order ODE's for investigation of the nonlinear dynamical systems with parameters is used. The property of the eight dimensional extensions of the four-dimensional Riemannian spaces of General Relativity are discussed.
@article{JMAG_2003_10_3_a3,
author = {Valerii Dryuma},
title = {The {Riemann} extensions in theory of differential equations and their applications},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {307--325},
year = {2003},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a3/}
}
TY - JOUR AU - Valerii Dryuma TI - The Riemann extensions in theory of differential equations and their applications JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 307 EP - 325 VL - 10 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a3/ LA - en ID - JMAG_2003_10_3_a3 ER -
Valerii Dryuma. The Riemann extensions in theory of differential equations and their applications. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 3, pp. 307-325. http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a3/