Sturm–Liouville problem with a distributed condition
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 3, pp. 290-300
Cet article a éte moissonné depuis la source Math-Net.Ru
A special problem for the standard liner differential equation of $2$-nd order on $[0,1]$ is investigated when one of boundary conditions must be orthogonal to a given measure on $[0,1]$. The measure and the potential are complex-valued. The main theorem yields some conditions for the alternative: the codimension or the linear span of the root functions in $C[0,1]$ is either $1$ or $\infty$. The transformation operators are applied to reduce the problem to the theory of entire functions.
@article{JMAG_2003_10_3_a1,
author = {Yuri Lyubich},
title = {Sturm{\textendash}Liouville problem with a distributed condition},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {290--300},
year = {2003},
volume = {10},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a1/}
}
Yuri Lyubich. Sturm–Liouville problem with a distributed condition. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 3, pp. 290-300. http://geodesic.mathdoc.fr/item/JMAG_2003_10_3_a1/