On the union of sets of semisimplicity
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 256-261 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of a set of semisimplicity, or $S_3$-set, as a set $\Lambda$ such that if $T$ is a representation of a LCA group $G$ with $Sp(T)\subset\Lambda$, then $T$ generates a semisimple Banach algebra. We prove that the union of $S_3$-sets is a $S_3$-set, provided their intersection is countable. In particular, the union of a countable set and a Helson $S$-set is a $S_3$-set.
@article{JMAG_2003_10_2_a9,
     author = {Gilbert Muraz and Quoc Phong Vu},
     title = {On the union of sets of semisimplicity},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {256--261},
     year = {2003},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a9/}
}
TY  - JOUR
AU  - Gilbert Muraz
AU  - Quoc Phong Vu
TI  - On the union of sets of semisimplicity
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 256
EP  - 261
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a9/
LA  - en
ID  - JMAG_2003_10_2_a9
ER  - 
%0 Journal Article
%A Gilbert Muraz
%A Quoc Phong Vu
%T On the union of sets of semisimplicity
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 256-261
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a9/
%G en
%F JMAG_2003_10_2_a9
Gilbert Muraz; Quoc Phong Vu. On the union of sets of semisimplicity. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 256-261. http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a9/