Factor-representation of the group $GL(\infty)$ and admissible representations $GL(\infty)^X$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 167-187
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is the first of three parts of the work which studies factor-representations of III-type of $ GL(\infty)$ group. Let $\mathfrak A$ be a complex finite-dimensional algebra with unit ${\mathbf 1}_{\mathfrak A}$, let $G(\mathfrak A ) $ designate a group of all infinite dimensional invertible matrices with values on $\mathfrak A$. The complete classification of unitary representations of $G(\mathfrak A )$, which are spherical with respect to unitary subgroup $U(\infty)\subset GL(\infty)=G(\mathbb{C}{\mathbf 1}_{\mathfrak A})\subset G(\mathfrak A)$, was obtained in the work. To each representation there corresponds a class of factor-representations $\Pi$ of $GL(\infty)$ group with the property, that there exists nonzero vector $\xi$ in a space of the representation $H_{\Pi}$, which suffices to correlation: $\varphi(g)=(\Pi(g)\xi,\xi)=\varphi(ugu^*)$ for all $u\in U(\infty)$. We give a complete description of representations which satisfy the last condition in further parts of the work.
@article{JMAG_2003_10_2_a3,
author = {N. I. Nessonov},
title = {Factor-representation of the group $GL(\infty)$ and admissible representations $GL(\infty)^X$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {167--187},
year = {2003},
volume = {10},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a3/}
}
TY - JOUR AU - N. I. Nessonov TI - Factor-representation of the group $GL(\infty)$ and admissible representations $GL(\infty)^X$ JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 167 EP - 187 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a3/ LA - ru ID - JMAG_2003_10_2_a3 ER -
N. I. Nessonov. Factor-representation of the group $GL(\infty)$ and admissible representations $GL(\infty)^X$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 167-187. http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a3/