On a relation between the coefficients and the sum of the generalized Taylor series
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 262-268
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $f\in C^\infty [-1,1]$ and $\exists\,\rho\in [1,2)$ such that $\forall\,k=0,1,2,\dots$ $\|f^{(k)}\|_{C[-1,1]}\leq c(f)\rho^k2^{\frac{k(k+1)}2}$. Then it expands in the generalized Taylor series, which was introduced by V. A. Rvachov in 1982. In this paper it is shown that if the restrictions $\|f^{(n)}\|=o(2^{\frac{n(n+1)}2})$, $n\to\infty$ are imposed on the sum of this series, and stronger restrictions $|f^{(n)}(x_{n,k})|\leq CA(n)$, $\frac{A(n+1)}{A(n)}\leq 2^{n+\frac 12} $ hold for its coefficients, then these stronger restrictions will hold for the sum of the series too. As a consequence the conditions of belonging to Gevrey class and of real analyticity for the above-mentioned functions are obtained.
@article{JMAG_2003_10_2_a10,
author = {T. V. Rvachova},
title = {On a relation between the coefficients and the sum of the generalized {Taylor} series},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {262--268},
year = {2003},
volume = {10},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a10/}
}
TY - JOUR AU - T. V. Rvachova TI - On a relation between the coefficients and the sum of the generalized Taylor series JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 262 EP - 268 VL - 10 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a10/ LA - en ID - JMAG_2003_10_2_a10 ER -
T. V. Rvachova. On a relation between the coefficients and the sum of the generalized Taylor series. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 262-268. http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a10/