On a relation between the coefficients and the sum of the generalized Taylor series
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 262-268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $f\in C^\infty [-1,1]$ and $\exists\,\rho\in [1,2)$ such that $\forall\,k=0,1,2,\dots$ $\|f^{(k)}\|_{C[-1,1]}\leq c(f)\rho^k2^{\frac{k(k+1)}2}$. Then it expands in the generalized Taylor series, which was introduced by V. A. Rvachov in 1982. In this paper it is shown that if the restrictions $\|f^{(n)}\|=o(2^{\frac{n(n+1)}2})$, $n\to\infty$ are imposed on the sum of this series, and stronger restrictions $|f^{(n)}(x_{n,k})|\leq CA(n)$, $\frac{A(n+1)}{A(n)}\leq 2^{n+\frac 12} $ hold for its coefficients, then these stronger restrictions will hold for the sum of the series too. As a consequence the conditions of belonging to Gevrey class and of real analyticity for the above-mentioned functions are obtained.
@article{JMAG_2003_10_2_a10,
     author = {T. V. Rvachova},
     title = {On a relation between the coefficients and the sum of the generalized {Taylor} series},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {262--268},
     year = {2003},
     volume = {10},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a10/}
}
TY  - JOUR
AU  - T. V. Rvachova
TI  - On a relation between the coefficients and the sum of the generalized Taylor series
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 262
EP  - 268
VL  - 10
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a10/
LA  - en
ID  - JMAG_2003_10_2_a10
ER  - 
%0 Journal Article
%A T. V. Rvachova
%T On a relation between the coefficients and the sum of the generalized Taylor series
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 262-268
%V 10
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a10/
%G en
%F JMAG_2003_10_2_a10
T. V. Rvachova. On a relation between the coefficients and the sum of the generalized Taylor series. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 2, pp. 262-268. http://geodesic.mathdoc.fr/item/JMAG_2003_10_2_a10/