Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 116-125
Cet article a éte moissonné depuis la source Math-Net.Ru
We received the characterization of those measures $\mu$ in the unit poludisk for which the differentiated operator is mapping the weighted anisotropic spaces of holomorphic functions with mixed norm into Lebesgue spaces $L^{q}(\mu)$.
@article{JMAG_2003_10_1_a9,
author = {F. A. Shamoyan},
title = {Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {116--125},
year = {2003},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a9/}
}
TY - JOUR AU - F. A. Shamoyan TI - Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 116 EP - 125 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a9/ LA - ru ID - JMAG_2003_10_1_a9 ER -
F. A. Shamoyan. Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a9/