Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 116-125 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We received the characterization of those measures $\mu$ in the unit poludisk for which the differentiated operator is mapping the weighted anisotropic spaces of holomorphic functions with mixed norm into Lebesgue spaces $L^{q}(\mu)$.
@article{JMAG_2003_10_1_a9,
     author = {F. A. Shamoyan},
     title = {Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {116--125},
     year = {2003},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a9/}
}
TY  - JOUR
AU  - F. A. Shamoyan
TI  - Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 116
EP  - 125
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a9/
LA  - ru
ID  - JMAG_2003_10_1_a9
ER  - 
%0 Journal Article
%A F. A. Shamoyan
%T Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 116-125
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a9/
%G ru
%F JMAG_2003_10_1_a9
F. A. Shamoyan. Embedding theorems for weighted anisotropic spaces of holomorphic functions in polydisk. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 116-125. http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a9/