On variation preserving operators
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 94-105
Cet article a éte moissonné depuis la source Math-Net.Ru
For a piecewise-continuous function $f$ on $[0,1]$ we denote by $\nu(f)$ the number of its sign changes. By $K_n[0,1]$ we denote the set of piecewise-continuous functions $f$ on $[0,1]$ such that $\nu(f)\le n$. We prove that for any $n\ge 2$ there are no integral transforms $\tilde{K}f(x)=\int_0^1 K(x,y)f(y)\,dy$ with a continuous kernel $K(x,y)$ such that $\nu(\tilde {K}f)=\nu(f)$, for every $f\in K_n[0,1]$. We give an example of a continuous kernel $K(x,y)$ such that $\nu(\tilde{K}f)=\nu(f)$, for every $f\in K_1[0,1]$.
@article{JMAG_2003_10_1_a7,
author = {Tetyana Lobova},
title = {On variation preserving operators},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {94--105},
year = {2003},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a7/}
}
Tetyana Lobova. On variation preserving operators. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 94-105. http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a7/