Some stability theorems on narrow operators acting in $L_1$ and $C(K)$
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 49-60
Cet article a éte moissonné depuis la source Math-Net.Ru
A new proof of two stability theorems concerning narrow operators acting from $L_1$ to $L_1$ or from $C(K)$ to an arbitrary Banach space is given. Namely a sum of two such operators and moreover a sum of a point-wise unconditionally convergent series of such operators is a narrow operator again. The relations between several possible definitions of narrow operators on $L_1$ are also discussed.
@article{JMAG_2003_10_1_a4,
author = {V. M. Kadets and M. M. Popov},
title = {Some stability theorems on narrow operators acting in $L_1$ and~$C(K)$},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {49--60},
year = {2003},
volume = {10},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a4/}
}
TY - JOUR AU - V. M. Kadets AU - M. M. Popov TI - Some stability theorems on narrow operators acting in $L_1$ and $C(K)$ JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2003 SP - 49 EP - 60 VL - 10 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a4/ LA - en ID - JMAG_2003_10_1_a4 ER -
V. M. Kadets; M. M. Popov. Some stability theorems on narrow operators acting in $L_1$ and $C(K)$. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 49-60. http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a4/