Maximum principle for “holomorphic functions” in the quantum ball
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 12-28 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the framework of quantum group theory non-commutative analogues of function algebras in the ball are studied. A description of the Shilov boundary for an algebra of “holomorphic functions”. In the paper methods of the theory of unitary dilations are used essentially.
@article{JMAG_2003_10_1_a1,
     author = {L. Vaksman},
     title = {Maximum principle for {\textquotedblleft}holomorphic functions{\textquotedblright} in the quantum ball},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {12--28},
     year = {2003},
     volume = {10},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a1/}
}
TY  - JOUR
AU  - L. Vaksman
TI  - Maximum principle for “holomorphic functions” in the quantum ball
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2003
SP  - 12
EP  - 28
VL  - 10
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a1/
LA  - ru
ID  - JMAG_2003_10_1_a1
ER  - 
%0 Journal Article
%A L. Vaksman
%T Maximum principle for “holomorphic functions” in the quantum ball
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2003
%P 12-28
%V 10
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a1/
%G ru
%F JMAG_2003_10_1_a1
L. Vaksman. Maximum principle for “holomorphic functions” in the quantum ball. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 12-28. http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a1/