Maximum principle for “holomorphic functions” in the quantum ball
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 12-28
Cet article a éte moissonné depuis la source Math-Net.Ru
In the framework of quantum group theory non-commutative analogues of function algebras in the ball are studied. A description of the Shilov boundary for an algebra of “holomorphic functions”. In the paper methods of the theory of unitary dilations are used essentially.
@article{JMAG_2003_10_1_a1,
author = {L. Vaksman},
title = {Maximum principle for {\textquotedblleft}holomorphic functions{\textquotedblright} in the quantum ball},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {12--28},
year = {2003},
volume = {10},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a1/}
}
L. Vaksman. Maximum principle for “holomorphic functions” in the quantum ball. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 10 (2003) no. 1, pp. 12-28. http://geodesic.mathdoc.fr/item/JMAG_2003_10_1_a1/