Normal forms of billiards
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 4, pp. 663-685 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The theory for normal billiard forms as a new class of reversible dynamic systems with projective involution is created. The qualitative analysis is carried out for regular points of billiard mapping that are close to the cycles of arbitrary order and about the diagonal of symmetric phase space.
@article{JMAG_2002_9_4_a8,
     author = {S. V. Naydenov and V. V. Yanovskii},
     title = {Normal forms of billiards},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {663--685},
     year = {2002},
     volume = {9},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_4_a8/}
}
TY  - JOUR
AU  - S. V. Naydenov
AU  - V. V. Yanovskii
TI  - Normal forms of billiards
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 663
EP  - 685
VL  - 9
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_4_a8/
LA  - ru
ID  - JMAG_2002_9_4_a8
ER  - 
%0 Journal Article
%A S. V. Naydenov
%A V. V. Yanovskii
%T Normal forms of billiards
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 663-685
%V 9
%N 4
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_4_a8/
%G ru
%F JMAG_2002_9_4_a8
S. V. Naydenov; V. V. Yanovskii. Normal forms of billiards. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 4, pp. 663-685. http://geodesic.mathdoc.fr/item/JMAG_2002_9_4_a8/