On the growth of meromorphic functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 4, pp. 642-647
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtained the estimates for upper and lower logarithmic density of the set $A(\gamma)=\Bigl\{r:\sum\limits_{k=1}^q\mathcal L(r,a_k,f)<2B(\gamma,\Delta(0,f'))T(r,f)\Bigr\}$, where $B(\gamma,\Delta)$ is Shea's constant, $\Delta(0,f')$ is Valiron's deficiency of the derivative of the function $f$ at zero.
@article{JMAG_2002_9_4_a6,
author = {I. I. Marchenko},
title = {On the growth of meromorphic functions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {642--647},
year = {2002},
volume = {9},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_4_a6/}
}
I. I. Marchenko. On the growth of meromorphic functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 4, pp. 642-647. http://geodesic.mathdoc.fr/item/JMAG_2002_9_4_a6/