Integrable Markov processes and quantum spin chains
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 401-411
Cet article a éte moissonné depuis la source Math-Net.Ru
A set of Markov processes corresponding to systems of hard-core particles interacting along the line are shown to be solvable via a dynamic matrix product ansatz (DMPA). We show that quantum spin Hamiltonians can be treated by the DMPA as well, and demonstrate how the DMPA, originally formulated for systems with open ends, works for periodic systems.
@article{JMAG_2002_9_3_a7,
author = {Vladislav Popkov and G. M. Sch\"utztz},
title = {Integrable {Markov} processes and quantum spin chains},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {401--411},
year = {2002},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a7/}
}
Vladislav Popkov; G. M. Schütztz. Integrable Markov processes and quantum spin chains. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 401-411. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a7/