On Wiegerinck's support theorem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 352-368 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let continuous function $f(x)$, $x\in\mathbb R^n$, tend to $0$ as $\|x\|\to\infty$ faster than any negative degree of $\|x\|$. Let Radon transform $\tilde f(\omega,t)$, $\omega\in\mathbb R^n$, $\|\omega\|=1$, $t\in\mathbb R$, of $f$ also tend to $0$ as $t\to\infty$ and, besides, do it very fast on a massive enough set of $\omega$. In the paper, we describe the additional properties that $f$ has under these assumptions for different rates of fast decreasing. In particular, the extremal case where $\tilde f(\omega,t)$ has the compact support with respect to $t$ for the open subset of unit sphere corresponds to Wiegerinck's Theorem mentioned in the title.
@article{JMAG_2002_9_3_a3,
     author = {Dmitri Logvinenko and Vladimir Logvinenko},
     title = {On {Wiegerinck's} support theorem},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {352--368},
     year = {2002},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a3/}
}
TY  - JOUR
AU  - Dmitri Logvinenko
AU  - Vladimir Logvinenko
TI  - On Wiegerinck's support theorem
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 352
EP  - 368
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a3/
LA  - en
ID  - JMAG_2002_9_3_a3
ER  - 
%0 Journal Article
%A Dmitri Logvinenko
%A Vladimir Logvinenko
%T On Wiegerinck's support theorem
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 352-368
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a3/
%G en
%F JMAG_2002_9_3_a3
Dmitri Logvinenko; Vladimir Logvinenko. On Wiegerinck's support theorem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 352-368. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a3/