On Wiegerinck's support theorem
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 352-368
Cet article a éte moissonné depuis la source Math-Net.Ru
Let continuous function $f(x)$, $x\in\mathbb R^n$, tend to $0$ as $\|x\|\to\infty$ faster than any negative degree of $\|x\|$. Let Radon transform $\tilde f(\omega,t)$, $\omega\in\mathbb R^n$, $\|\omega\|=1$, $t\in\mathbb R$, of $f$ also tend to $0$ as $t\to\infty$ and, besides, do it very fast on a massive enough set of $\omega$. In the paper, we describe the additional properties that $f$ has under these assumptions for different rates of fast decreasing. In particular, the extremal case where $\tilde f(\omega,t)$ has the compact support with respect to $t$ for the open subset of unit sphere corresponds to Wiegerinck's Theorem mentioned in the title.
@article{JMAG_2002_9_3_a3,
author = {Dmitri Logvinenko and Vladimir Logvinenko},
title = {On {Wiegerinck's} support theorem},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {352--368},
year = {2002},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a3/}
}
Dmitri Logvinenko; Vladimir Logvinenko. On Wiegerinck's support theorem. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 352-368. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a3/