Approximation of subharmonic functions of slow growth
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 509-520 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $u$ be a subharmonic function in $\mathbb C$, $\mu_u$ its Riesz measure. Suppose that $C_1\le\mu(\{z:R<|z|\le R\psi(R)\}\le C_2$ $(R\ge R_1)$ for some positive constants $C_1$, $C_2$, and $R_1$, and a slowly growing to $+\infty$ function $\psi(r)$ such that $r/\psi(r) \nearrow +\infty$ ($r\to+\infty$). Then there exist an entire function $f$, constants $K_1=K_1(C_1,C_2)$, $K_2=K_2(C_2)$ and a set $E\subset\mathbb C$ such that $$ |u(z)-\log|f(z)||\le K_1\log\psi(|z|), \qquad z\to\infty, \quad z\notin E, $$ and $E$ can be covered by the system of discs $D_{z_k}(\rho_k)$ satisfying $$ \sum_{R<|z_k|<R\psi(R)}\frac{\rho_k\psi(|z_k|)}{|z_k|}<K_2, $$ as $R_2\to+\infty$. We prove also that the estimate of the exceptional set is sharp up to a constant factor.
@article{JMAG_2002_9_3_a19,
     author = {Igor Chyzhykov},
     title = {Approximation of subharmonic functions of slow growth},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {509--520},
     year = {2002},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a19/}
}
TY  - JOUR
AU  - Igor Chyzhykov
TI  - Approximation of subharmonic functions of slow growth
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 509
EP  - 520
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a19/
LA  - en
ID  - JMAG_2002_9_3_a19
ER  - 
%0 Journal Article
%A Igor Chyzhykov
%T Approximation of subharmonic functions of slow growth
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 509-520
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a19/
%G en
%F JMAG_2002_9_3_a19
Igor Chyzhykov. Approximation of subharmonic functions of slow growth. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 509-520. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a19/