Orthogonal polynomials on the real and the imaginary axes in the complex plane
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 502-508
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper systems of polynomials satisfying a five-term reccurent relation, which can be written in a matrix form $J_5 p(\lambda)= \lambda^2 p(\lambda)$, where $p(\lambda)=(p_0(\lambda),p_1(\lambda),\dots,p_n(\lambda), \dots)^T$ is a vector of polynomials, $J_5$ is a semi-infinite, five-diagonal, Hermitian matrix are considered. The such kind systems which also satisfy the relation $J_3 p=\lambda p$, where $J_3$ is a Jacobi matrix, are considered. A parameteric form of some such systems and matrices is obtained. Formulas of orthonormality for some of the systems are also obtained.
@article{JMAG_2002_9_3_a18,
author = {S. M. Zagorodnyuk},
title = {Orthogonal polynomials on the real and the imaginary~axes in the complex plane},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {502--508},
year = {2002},
volume = {9},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a18/}
}
TY - JOUR AU - S. M. Zagorodnyuk TI - Orthogonal polynomials on the real and the imaginary axes in the complex plane JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2002 SP - 502 EP - 508 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a18/ LA - ru ID - JMAG_2002_9_3_a18 ER -
S. M. Zagorodnyuk. Orthogonal polynomials on the real and the imaginary axes in the complex plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 502-508. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a18/