Orthogonal polynomials on the real and the imaginary axes in the complex plane
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 502-508 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper systems of polynomials satisfying a five-term reccurent relation, which can be written in a matrix form $J_5 p(\lambda)= \lambda^2 p(\lambda)$, where $p(\lambda)=(p_0(\lambda),p_1(\lambda),\dots,p_n(\lambda), \dots)^T$ is a vector of polynomials, $J_5$ is a semi-infinite, five-diagonal, Hermitian matrix are considered. The such kind systems which also satisfy the relation $J_3 p=\lambda p$, where $J_3$ is a Jacobi matrix, are considered. A parameteric form of some such systems and matrices is obtained. Formulas of orthonormality for some of the systems are also obtained.
@article{JMAG_2002_9_3_a18,
     author = {S. M. Zagorodnyuk},
     title = {Orthogonal polynomials on the real and the imaginary~axes in the complex plane},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {502--508},
     year = {2002},
     volume = {9},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a18/}
}
TY  - JOUR
AU  - S. M. Zagorodnyuk
TI  - Orthogonal polynomials on the real and the imaginary axes in the complex plane
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 502
EP  - 508
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a18/
LA  - ru
ID  - JMAG_2002_9_3_a18
ER  - 
%0 Journal Article
%A S. M. Zagorodnyuk
%T Orthogonal polynomials on the real and the imaginary axes in the complex plane
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 502-508
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a18/
%G ru
%F JMAG_2002_9_3_a18
S. M. Zagorodnyuk. Orthogonal polynomials on the real and the imaginary axes in the complex plane. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 502-508. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a18/