On partial fraction expansion for meromorphic functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 487-492 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is a short survey of results devoted to partial fraction expansion for meromorphic functions of one complex variable. In particular, this contains new results by the author on representation of a meromorphic function $\Phi$ on $\mathbb C$ in the form $$ \Phi(z)=\lim_{R\to\infty}\sum_{|b_k|<R}\Phi_k(z)+\alpha(z), $$ where $\{b_k\}_1^\infty$ is the sequence of all its poles arranged in the order of increase of the absolute values and tending to $\infty$, $$ \biggl\{\Phi_k(z)=\sum_{n=1}^{N_k}\frac{A_{k,n}}{(z-b_k)^n},\ k=1,2,\dots\biggr\} $$ is the sequence of principal parts of the Laurent expansion of $\Phi$ near the poles, and $\alpha$ is an entire function.
@article{JMAG_2002_9_3_a16,
     author = {L. S. Maergoiz},
     title = {On partial fraction expansion for meromorphic functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {487--492},
     year = {2002},
     volume = {9},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a16/}
}
TY  - JOUR
AU  - L. S. Maergoiz
TI  - On partial fraction expansion for meromorphic functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 487
EP  - 492
VL  - 9
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a16/
LA  - en
ID  - JMAG_2002_9_3_a16
ER  - 
%0 Journal Article
%A L. S. Maergoiz
%T On partial fraction expansion for meromorphic functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 487-492
%V 9
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a16/
%G en
%F JMAG_2002_9_3_a16
L. S. Maergoiz. On partial fraction expansion for meromorphic functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 487-492. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a16/