Stabilization of solutions of nonlinear parabolic equations on thin two-layer domains
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 446-454
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper is concerned with the large time behavior of solutions of the heat equation on a thin two-layer domain. Such systems may arise from modeling thermal emission (as a result of chemical reaction) and heat transfer between two thin films. It is shown that every solution converges as $t\to+\infty$ to a single equilibrium point.
@article{JMAG_2002_9_3_a12,
author = {A. M. Rekalo},
title = {Stabilization of solutions of nonlinear parabolic equations on thin two-layer domains},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {446--454},
year = {2002},
volume = {9},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a12/}
}
TY - JOUR AU - A. M. Rekalo TI - Stabilization of solutions of nonlinear parabolic equations on thin two-layer domains JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2002 SP - 446 EP - 454 VL - 9 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a12/ LA - en ID - JMAG_2002_9_3_a12 ER -
A. M. Rekalo. Stabilization of solutions of nonlinear parabolic equations on thin two-layer domains. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 3, pp. 446-454. http://geodesic.mathdoc.fr/item/JMAG_2002_9_3_a12/