About one of Weil's theorems for many-dimensional case
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 224-232
Cet article a éte moissonné depuis la source Math-Net.Ru
It is given the new theorem, which extends the known Weil's theorem about Shturm–Liuvill's operator self-adjointness in $L_2(-\infty;+\infty)$ to elliptic second-order operators in $L_2(G)$ ($G\subseteq R^n$). Many-dimensional Weil's theorem is followed from more general theorem, for statement which special construction of covering collection is built. Given results contain the known analogs of many-dimensional Weil's theorem and, as distinguished from them, the results refer to the domain $G$, which may be proper subset of $R^n$.
@article{JMAG_2002_9_2_a7,
author = {A. G. Brusentsev},
title = {About one of {Weil's} theorems for many-dimensional case},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {224--232},
year = {2002},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a7/}
}
A. G. Brusentsev. About one of Weil's theorems for many-dimensional case. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 224-232. http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a7/