About one of Weil's theorems for many-dimensional case
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 224-232 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is given the new theorem, which extends the known Weil's theorem about Shturm–Liuvill's operator self-adjointness in $L_2(-\infty;+\infty)$ to elliptic second-order operators in $L_2(G)$ ($G\subseteq R^n$). Many-dimensional Weil's theorem is followed from more general theorem, for statement which special construction of covering collection is built. Given results contain the known analogs of many-dimensional Weil's theorem and, as distinguished from them, the results refer to the domain $G$, which may be proper subset of $R^n$.
@article{JMAG_2002_9_2_a7,
     author = {A. G. Brusentsev},
     title = {About one of {Weil's} theorems for many-dimensional case},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {224--232},
     year = {2002},
     volume = {9},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a7/}
}
TY  - JOUR
AU  - A. G. Brusentsev
TI  - About one of Weil's theorems for many-dimensional case
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 224
EP  - 232
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a7/
LA  - ru
ID  - JMAG_2002_9_2_a7
ER  - 
%0 Journal Article
%A A. G. Brusentsev
%T About one of Weil's theorems for many-dimensional case
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 224-232
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a7/
%G ru
%F JMAG_2002_9_2_a7
A. G. Brusentsev. About one of Weil's theorems for many-dimensional case. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 224-232. http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a7/