Two problems concerning uniform polynomial approximation of continuous functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 268-271
Cet article a éte moissonné depuis la source Math-Net.Ru
We remind two theorems closely connected with the fundamental P. L. Chebyshev's theorem on the best approximation of functions by polynomials, namely S. N. Bernstein's theorem on reconstruction of a function by its deviations from polynomials, and the author's one on distribution of Chebyshev's alternance points. In connection with this two results two open (in author's opinion) problems are formulated.
@article{JMAG_2002_9_2_a13,
author = {Mikhail I. Kadets},
title = {Two problems concerning uniform polynomial approximation of continuous functions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {268--271},
year = {2002},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a13/}
}
TY - JOUR AU - Mikhail I. Kadets TI - Two problems concerning uniform polynomial approximation of continuous functions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2002 SP - 268 EP - 271 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a13/ LA - en ID - JMAG_2002_9_2_a13 ER -
Mikhail I. Kadets. Two problems concerning uniform polynomial approximation of continuous functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 268-271. http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a13/