Two problems concerning uniform polynomial approximation of continuous functions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 268-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We remind two theorems closely connected with the fundamental P. L. Chebyshev's theorem on the best approximation of functions by polynomials, namely S. N. Bernstein's theorem on reconstruction of a function by its deviations from polynomials, and the author's one on distribution of Chebyshev's alternance points. In connection with this two results two open (in author's opinion) problems are formulated.
@article{JMAG_2002_9_2_a13,
     author = {Mikhail I. Kadets},
     title = {Two problems concerning uniform polynomial approximation of continuous functions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {268--271},
     year = {2002},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a13/}
}
TY  - JOUR
AU  - Mikhail I. Kadets
TI  - Two problems concerning uniform polynomial approximation of continuous functions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 268
EP  - 271
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a13/
LA  - en
ID  - JMAG_2002_9_2_a13
ER  - 
%0 Journal Article
%A Mikhail I. Kadets
%T Two problems concerning uniform polynomial approximation of continuous functions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 268-271
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a13/
%G en
%F JMAG_2002_9_2_a13
Mikhail I. Kadets. Two problems concerning uniform polynomial approximation of continuous functions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 268-271. http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a13/