Integrable initial boundary value problems
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 261-267 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The Korteweg–de Vries equation is considered on a half-line with zero boundary conditions at the origin and with arbitrary smooth initial values vanishing rapidly enough. The problem is effectively integrated by means of the inverse scattering method when the associated linear problem has no discrete spectrum. In this case the global solvability theorem is proved.
@article{JMAG_2002_9_2_a12,
     author = {I. T. Habibullin},
     title = {Integrable initial boundary value problems},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {261--267},
     year = {2002},
     volume = {9},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a12/}
}
TY  - JOUR
AU  - I. T. Habibullin
TI  - Integrable initial boundary value problems
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 261
EP  - 267
VL  - 9
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a12/
LA  - en
ID  - JMAG_2002_9_2_a12
ER  - 
%0 Journal Article
%A I. T. Habibullin
%T Integrable initial boundary value problems
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 261-267
%V 9
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a12/
%G en
%F JMAG_2002_9_2_a12
I. T. Habibullin. Integrable initial boundary value problems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 261-267. http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a12/