Continuity of measures on the unit circle given by their reflection coefficients
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 253-260
Cet article a éte moissonné depuis la source Math-Net.Ru
Orthogonal polynomials on the unit circle are fully determined by their reflection coefficients through the Szegő recurrences. The discrete spectrum (the set of mass points) of measures is studied in terms of the reflection coefficients. The cases when these parameters go to zero or to nonzero complex number from the open unit disk are essentially different. New examples of singular continuous measures given by their reflection coefficients are presented.
@article{JMAG_2002_9_2_a11,
author = {L. B. Golinskii},
title = {Continuity of measures on the unit circle given by their reflection coefficients},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {253--260},
year = {2002},
volume = {9},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a11/}
}
TY - JOUR AU - L. B. Golinskii TI - Continuity of measures on the unit circle given by their reflection coefficients JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2002 SP - 253 EP - 260 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a11/ LA - ru ID - JMAG_2002_9_2_a11 ER -
L. B. Golinskii. Continuity of measures on the unit circle given by their reflection coefficients. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 253-260. http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a11/