Gauss type complex quadrature formulae, power moment problem and elliptic curves
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 128-145
Cet article a éte moissonné depuis la source Math-Net.Ru
A complex-valued Borel measure $\omega$ on $\mathbb C$ is called $n$-reducible if there is a quadrature formula with $n$ complex nodes which is exact for all polynomials of degree $\le 2n-1$. A criterion of $n$-reducibility is given on the base of a solvability criterion for a complex power moment problem. The latter is an analytic version of a Sylvester theorem from the theory of binary form invariants. The $2$-reducibility of measures $\omega$ with $|{\mathrm{supp}\,\omega}|=3$ is closely related to the modular invariants of elliptic curves.
@article{JMAG_2002_9_2_a1,
author = {Yuri I. Lyubich},
title = {Gauss type complex quadrature formulae, power moment problem and elliptic curves},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {128--145},
year = {2002},
volume = {9},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a1/}
}
TY - JOUR AU - Yuri I. Lyubich TI - Gauss type complex quadrature formulae, power moment problem and elliptic curves JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2002 SP - 128 EP - 145 VL - 9 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a1/ LA - en ID - JMAG_2002_9_2_a1 ER -
Yuri I. Lyubich. Gauss type complex quadrature formulae, power moment problem and elliptic curves. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 2, pp. 128-145. http://geodesic.mathdoc.fr/item/JMAG_2002_9_2_a1/