On non-quasianalytic representations of Abelian groups
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 101-106
Cet article a éte moissonné depuis la source Math-Net.Ru
We study representations $T_g$ of a locally compact Abelian group $G$ with a scattered spectrum satisfying the conditions: there exists $S \subset G$ such that $G=S-S$ and for all $s\in S$ $$ \|T_{ns}\|=o(n^k), \ \ k \ge 1, \ \ \ln\|T_{-ns}\|=o({\sqrt{n}}), \ \ \text{as}\ n\to+\infty. $$
@article{JMAG_2002_9_1_a6,
author = {G. M. Feldman and Quoc-Phong Vu},
title = {On non-quasianalytic representations of {Abelian} groups},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {101--106},
year = {2002},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a6/}
}
G. M. Feldman; Quoc-Phong Vu. On non-quasianalytic representations of Abelian groups. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 101-106. http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a6/