On non-quasianalytic representations of Abelian groups
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 101-106 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study representations $T_g$ of a locally compact Abelian group $G$ with a scattered spectrum satisfying the conditions: there exists $S \subset G$ such that $G=S-S$ and for all $s\in S$ $$ \|T_{ns}\|=o(n^k), \ \ k \ge 1, \ \ \ln\|T_{-ns}\|=o({\sqrt{n}}), \ \ \text{as}\ n\to+\infty. $$
@article{JMAG_2002_9_1_a6,
     author = {G. M. Feldman and Quoc-Phong Vu},
     title = {On non-quasianalytic representations of {Abelian} groups},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {101--106},
     year = {2002},
     volume = {9},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a6/}
}
TY  - JOUR
AU  - G. M. Feldman
AU  - Quoc-Phong Vu
TI  - On non-quasianalytic representations of Abelian groups
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 101
EP  - 106
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a6/
LA  - en
ID  - JMAG_2002_9_1_a6
ER  - 
%0 Journal Article
%A G. M. Feldman
%A Quoc-Phong Vu
%T On non-quasianalytic representations of Abelian groups
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 101-106
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a6/
%G en
%F JMAG_2002_9_1_a6
G. M. Feldman; Quoc-Phong Vu. On non-quasianalytic representations of Abelian groups. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 101-106. http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a6/