Measures on the unit circle with slowly decaying reflection coefficients and Fourier series
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 95-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The relation between the theory of orthogonal polynomials on the unit circle and the spectral theory of a class of matrix difference equations known as the Szegő equations is under the investigation. The key role is played by the matrix form of the Szegő recurrences, which are completely determined by a sequence of complex numbers from the open unit disk (reflection coefficients). The structure of measures (absolutely continuous and singular parts) with slowly decaying reflection coefficients is studied via the theory of uniformly convergent Fourier series.
@article{JMAG_2002_9_1_a5,
     author = {L. B. Golinskii},
     title = {Measures on the unit circle with slowly decaying reflection coefficients and {Fourier} series},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {95--100},
     year = {2002},
     volume = {9},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a5/}
}
TY  - JOUR
AU  - L. B. Golinskii
TI  - Measures on the unit circle with slowly decaying reflection coefficients and Fourier series
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2002
SP  - 95
EP  - 100
VL  - 9
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a5/
LA  - ru
ID  - JMAG_2002_9_1_a5
ER  - 
%0 Journal Article
%A L. B. Golinskii
%T Measures on the unit circle with slowly decaying reflection coefficients and Fourier series
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2002
%P 95-100
%V 9
%N 1
%U http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a5/
%G ru
%F JMAG_2002_9_1_a5
L. B. Golinskii. Measures on the unit circle with slowly decaying reflection coefficients and Fourier series. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 95-100. http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a5/