Some remarks on vector-valued integration
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 48-65
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper continues the study of the notion of Riemann–Lebesgue integral, which was introduced before by two of the authors. The result about the convexity of the limit set of integral sums is generalized to the case of weakly-compactly generated spaces. The notion of Riemann–Lebesgue integral is used to introduce new classes of Banach spaces. The properties of these new spaces are studied.
@article{JMAG_2002_9_1_a2,
author = {V. Kadets and B. Shumyatskiy and R. Shvidkoy and L. Tseytlin and K. Zheltukhin},
title = {Some remarks on vector-valued integration},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {48--65},
year = {2002},
volume = {9},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a2/}
}
TY - JOUR AU - V. Kadets AU - B. Shumyatskiy AU - R. Shvidkoy AU - L. Tseytlin AU - K. Zheltukhin TI - Some remarks on vector-valued integration JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2002 SP - 48 EP - 65 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a2/ LA - en ID - JMAG_2002_9_1_a2 ER -
V. Kadets; B. Shumyatskiy; R. Shvidkoy; L. Tseytlin; K. Zheltukhin. Some remarks on vector-valued integration. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 48-65. http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a2/