Functional models, unitary invariants, mosaics and principal functions for operators with trace class self-commutator
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 18-47
Cet article a éte moissonné depuis la source Math-Net.Ru
The singular integral model of an operator with trace class self-commutator is constructed. A decomposition theorem for operators in orthogonal sum of normal and completely nonnormal operators is obtained. A notion of the hyponormal metrical colligation is introduced, and it is proved that the determining and characteristic functions are unitary invariants for the simple colligations. A class of functions, which are the semidetermining functions is described. On the base of the singular integral model the mosaics and the Pincus principal functions are constructed.
@article{JMAG_2002_9_1_a1,
author = {I. V. Vorobyov},
title = {Functional models, unitary invariants, mosaics and principal functions for operators with trace class self-commutator},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {18--47},
year = {2002},
volume = {9},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a1/}
}
TY - JOUR AU - I. V. Vorobyov TI - Functional models, unitary invariants, mosaics and principal functions for operators with trace class self-commutator JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2002 SP - 18 EP - 47 VL - 9 IS - 1 UR - http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a1/ LA - ru ID - JMAG_2002_9_1_a1 ER -
%0 Journal Article %A I. V. Vorobyov %T Functional models, unitary invariants, mosaics and principal functions for operators with trace class self-commutator %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2002 %P 18-47 %V 9 %N 1 %U http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a1/ %G ru %F JMAG_2002_9_1_a1
I. V. Vorobyov. Functional models, unitary invariants, mosaics and principal functions for operators with trace class self-commutator. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 9 (2002) no. 1, pp. 18-47. http://geodesic.mathdoc.fr/item/JMAG_2002_9_1_a1/