Guantum matrix ball: the Cauchy–Szegö kernel and the Shilov boundary
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 4, pp. 366-384
Cet article a éte moissonné depuis la source Math-Net.Ru
This work produces a q-analogue of the Cauchy–Szegö integral representation that retrieves a holomorphic function in the matrix ball from its values on the Shilov boundary. Besides that, the Shilov boundary of the quantum matrix ball is described and the $U_q\mathfrak{su}_{m,n}$-covariance of the $U_q\mathfrak{s}(\mathfrak{u}_m \times \mathfrak{u}_n)$-invariant integral on this boundary is established. The latter result allows one to obtain a q-analogue for the principal degenerate series of unitary representations related to the Shilov boundary of the matrix ball.
@article{JMAG_2001_8_4_a1,
author = {L. Vaksman},
title = {Guantum matrix ball: the {Cauchy{\textendash}Szeg\"o} kernel and the {Shilov} boundary},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {366--384},
year = {2001},
volume = {8},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_4_a1/}
}
L. Vaksman. Guantum matrix ball: the Cauchy–Szegö kernel and the Shilov boundary. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 4, pp. 366-384. http://geodesic.mathdoc.fr/item/JMAG_2001_8_4_a1/