On $q$-analogues of certain prehomogeneous vector spaces: comparison of several approaches
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 3, pp. 325-345
Cet article a éte moissonné depuis la source Math-Net.Ru
There exist several approaches to constructing $q$-analogues of prehomogeneous vector spaces of commutative parabolic type. In the present paper we compare three approaches developed by H. P. Jakobsen, T. Tanisaki et al., and L. Vaksman et al. Within framework of these three approaches the following problem is solved: a $q$-analogue of the algebra ${\mathbb C}[V]$ of holomorphic polynomials on an arbitrary irreducible prehomogeneous vector space $V$ (of commutative parabolic type) is constructed, and, moreover, the corresponding (non-commutative) algebra is endowed with a structure of $U$-module algebra with $U$ being certain quantum universal enveloping algebra. We prove that the three $q$-analogues of ${\mathbb C}[V]$ are isomorphic as $U$-module algebras. For the sake of simplicity we consider only the case when $V$ is the space of $2\times2$ complex matrices. But we present such proof which is transferable to the case of an arbitrary irreducible prehomogeneous vector space of commutative parabolic type.
@article{JMAG_2001_8_3_a7,
author = {D. Shklyarov},
title = {On $q$-analogues of certain prehomogeneous vector spaces: comparison of several approaches},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {325--345},
year = {2001},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a7/}
}
TY - JOUR AU - D. Shklyarov TI - On $q$-analogues of certain prehomogeneous vector spaces: comparison of several approaches JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2001 SP - 325 EP - 345 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a7/ LA - en ID - JMAG_2001_8_3_a7 ER -
D. Shklyarov. On $q$-analogues of certain prehomogeneous vector spaces: comparison of several approaches. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 3, pp. 325-345. http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a7/