Weak topology and properties fulfilled almost everywhere
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 3, pp. 261-271 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $B$ be a Banach space. A sequence of $B$-valued functions $\langle f_n\rangle$ is weakly almost everywhere convergent to $0$ provided $x^*\circ f_n$ is almost everywhere convergent to $0$ for every continuous linear $x^*$ on $B$. A Banach space is finite dimensional if and only if every weakly almost everywhere convergent sequence of $B$-valued functions is almost everywhere bounded. If $B$ is separable, $B^*$ is separable if and only if every weakly almost everywhere convergent to $0$ and almost everywhere bounded sequence of $B$-valued functions is weakly convergent to $0$ almost everywhere.
@article{JMAG_2001_8_3_a2,
     author = {V. Kadets and T. Kucherenko},
     title = {Weak topology and properties fulfilled almost everywhere},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {261--271},
     year = {2001},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a2/}
}
TY  - JOUR
AU  - V. Kadets
AU  - T. Kucherenko
TI  - Weak topology and properties fulfilled almost everywhere
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2001
SP  - 261
EP  - 271
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a2/
LA  - en
ID  - JMAG_2001_8_3_a2
ER  - 
%0 Journal Article
%A V. Kadets
%A T. Kucherenko
%T Weak topology and properties fulfilled almost everywhere
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2001
%P 261-271
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a2/
%G en
%F JMAG_2001_8_3_a2
V. Kadets; T. Kucherenko. Weak topology and properties fulfilled almost everywhere. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 3, pp. 261-271. http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a2/