Weak topology and properties fulfilled almost everywhere
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 3, pp. 261-271
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $B$ be a Banach space. A sequence of $B$-valued functions $\langle f_n\rangle$ is weakly almost everywhere convergent to $0$ provided $x^*\circ f_n$ is almost everywhere convergent to $0$ for every continuous linear $x^*$ on $B$. A Banach space is finite dimensional if and only if every weakly almost everywhere convergent sequence of $B$-valued functions is almost everywhere bounded. If $B$ is separable, $B^*$ is separable if and only if every weakly almost everywhere convergent to $0$ and almost everywhere bounded sequence of $B$-valued functions is weakly convergent to $0$ almost everywhere.
@article{JMAG_2001_8_3_a2,
author = {V. Kadets and T. Kucherenko},
title = {Weak topology and properties fulfilled almost everywhere},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {261--271},
year = {2001},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a2/}
}
V. Kadets; T. Kucherenko. Weak topology and properties fulfilled almost everywhere. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 3, pp. 261-271. http://geodesic.mathdoc.fr/item/JMAG_2001_8_3_a2/