About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 228-234 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The proof of the theorem of connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions is given.
@article{JMAG_2001_8_2_a9,
     author = {T. M. Shamilev},
     title = {About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {228--234},
     year = {2001},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/}
}
TY  - JOUR
AU  - T. M. Shamilev
TI  - About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2001
SP  - 228
EP  - 234
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/
LA  - ru
ID  - JMAG_2001_8_2_a9
ER  - 
%0 Journal Article
%A T. M. Shamilev
%T About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2001
%P 228-234
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/
%G ru
%F JMAG_2001_8_2_a9
T. M. Shamilev. About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 228-234. http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/