About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 228-234
Cet article a éte moissonné depuis la source Math-Net.Ru
The proof of the theorem of connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions is given.
@article{JMAG_2001_8_2_a9,
author = {T. M. Shamilev},
title = {About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {228--234},
year = {2001},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/}
}
TY - JOUR AU - T. M. Shamilev TI - About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions JO - Žurnal matematičeskoj fiziki, analiza, geometrii PY - 2001 SP - 228 EP - 234 VL - 8 IS - 2 UR - http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/ LA - ru ID - JMAG_2001_8_2_a9 ER -
%0 Journal Article %A T. M. Shamilev %T About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions %J Žurnal matematičeskoj fiziki, analiza, geometrii %D 2001 %P 228-234 %V 8 %N 2 %U http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/ %G ru %F JMAG_2001_8_2_a9
T. M. Shamilev. About connection between ascending chain conditions of $m$-semilattice with reduction and of it's $m$-subsemilattice of $G$-invariable elements for finite group actions. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 228-234. http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a9/