On the class of non-linear control systems mapping onto linear systems
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 205-214
Cet article a éte moissonné depuis la source Math-Net.Ru
The control system in the form $\dot x=a(x)+b(x)u$, $x\in{\mathbf R}^n$, $u\in{\mathbf R}$, is considered. In the term of Lee brackets necessary and sufficient conditions of possibility to map of this control system (without change of a control) onto the system with additive control, in particular, onto the linear control system with respect to $x$ and $u$ are given. The conditions of local controllability of systems mapping onto linear system are formulated.
@article{JMAG_2001_8_2_a7,
author = {E. V. Sklyar},
title = {On the class of non-linear control systems mapping onto linear systems},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {205--214},
year = {2001},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a7/}
}
E. V. Sklyar. On the class of non-linear control systems mapping onto linear systems. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 205-214. http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a7/