On possible deterioration of smoothness under the operation of convolution
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 175-188
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $\mu$ be a completely finite Borel non-negative measure on the real line $\mathbf R$. We give condition on measure $\mu$ which is necessary and sufficient for the existence of a non-negative, integrable on the real line, and entire function $p$ such that \begin{equation} \operatorname{ess\,sup}\{(p\ast\mu)(x):x\in I\}=\infty \text{ для любого интервала } I\subset\mathbf R. \tag{1} \end{equation} We give also conditions on measure $\mu$ which are sufficient for the existence of an entire function $p$ with prescribed growth in complex plane (for example, of finite order $\varrho>1$) that is non-negative and integrable on the real line and satisfies condition (1).
@article{JMAG_2001_8_2_a5,
author = {A. I. Il'inskii},
title = {On possible deterioration of smoothness under the operation of convolution},
journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
pages = {175--188},
year = {2001},
volume = {8},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a5/}
}
A. I. Il'inskii. On possible deterioration of smoothness under the operation of convolution. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 175-188. http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a5/