On possible deterioration of smoothness under the operation of convolution
Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 175-188 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $\mu$ be a completely finite Borel non-negative measure on the real line $\mathbf R$. We give condition on measure $\mu$ which is necessary and sufficient for the existence of a non-negative, integrable on the real line, and entire function $p$ such that \begin{equation} \operatorname{ess\,sup}\{(p\ast\mu)(x):x\in I\}=\infty \text{ для любого интервала } I\subset\mathbf R. \tag{1} \end{equation} We give also conditions on measure $\mu$ which are sufficient for the existence of an entire function $p$ with prescribed growth in complex plane (for example, of finite order $\varrho>1$) that is non-negative and integrable on the real line and satisfies condition (1).
@article{JMAG_2001_8_2_a5,
     author = {A. I. Il'inskii},
     title = {On possible deterioration of smoothness under the operation of convolution},
     journal = {\v{Z}urnal matemati\v{c}eskoj fiziki, analiza, geometrii},
     pages = {175--188},
     year = {2001},
     volume = {8},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a5/}
}
TY  - JOUR
AU  - A. I. Il'inskii
TI  - On possible deterioration of smoothness under the operation of convolution
JO  - Žurnal matematičeskoj fiziki, analiza, geometrii
PY  - 2001
SP  - 175
EP  - 188
VL  - 8
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a5/
LA  - ru
ID  - JMAG_2001_8_2_a5
ER  - 
%0 Journal Article
%A A. I. Il'inskii
%T On possible deterioration of smoothness under the operation of convolution
%J Žurnal matematičeskoj fiziki, analiza, geometrii
%D 2001
%P 175-188
%V 8
%N 2
%U http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a5/
%G ru
%F JMAG_2001_8_2_a5
A. I. Il'inskii. On possible deterioration of smoothness under the operation of convolution. Žurnal matematičeskoj fiziki, analiza, geometrii, Tome 8 (2001) no. 2, pp. 175-188. http://geodesic.mathdoc.fr/item/JMAG_2001_8_2_a5/